
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2008; 56:1061–1067
Published online 20 September 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1606

Reduced modelling of blood flow in the cerebral circulation:
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SUMMARY

Pulsatile blood flow in the cerebral circulation is simulated using a nonlinear, one-dimensional model of
the arterial haemodynamics coupled in the time domain with lumped parameter and flow auto-regulation
models of the perfusion of the microcirculation. A linear analysis of the coupling shows that a resistance
equal to the characteristic impedance of the blood vessel is required at the inflow of a terminal windkessel
model to avoid the generation of non-physiological wave reflections. The cerebral model suggests that
the worst anatomical variation of the circle of Willis in terms of restoring normal cerebral flows after a
sudden carotid occlusion is a circle without the first segment of the contralateral anterior cerebral artery.
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1. INTRODUCTION

A good understanding of pulse wave propagation in the normal cardiovascular system and the
impact of disease and anatomical variations on the propagation patterns provide valuable informa-
tion for clinical diagnosis and treatment. One-dimensional (1-D) modelling efficiently simulates
the problem because of the large pulse wavelengths compared with arterial diameters. While
three-dimensional (3-D) models are typically limited to local areas of the system because of their
computational cost, 1-D models offer a good compromise between accuracy and cost when a
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Figure 1. Schematic representation of the 1-D arterial network used to simulate cerebral blood flow and
the anatomical variations studied. The following arteries are included: aorta (1,2,4,8), brachiocephalic
(3), subclavians (7,9), brachials (15,16), carotids (5,6,10,11,12,13,18,21), vertebrals (14,17), basilar
(22), PCoAs (19,20), ACoA (31), MCAs (23,24), ACAs (25,26,29,30), and PCAs (27,28,32,33).
Terminal branches coupled with RCR windkessel models (◦) or 0-D cerebral auto-regulation
models (∗). The panels show pressure and velocity waveforms in ascending aorta (1), right common

carotid (6), right MCA (24), and ACoA (31).

more general simulation is required. However, the large number of vessels in the full arterial
and venous systems (the number increases exponentially as more generations of bifurcations are
introduced) makes it impossible to model all vessels using the 1-D formulation. Consequently,
even the 1-D model has to be truncated after few generations of bifurcations. The haemodynamic
effect of vessels beyond the 1-D model arteries can be accounted for using lumped parameter or
zero-dimensional (0-D) models relating the flow to pressure.

This investigation focuses on the coupling of the nonlinear, time-domain, 1-D formulation with
0-D models. It addresses some numerical and physical issues of the coupling. In particular, we
show how cerebral flow auto-regulation can be simulated using a lumped parameter model. These
algorithms are then applied to assess the effects on cerebral flows of a sudden carotid occlusion,
taking into account the most frequent anatomical variations of the circle of Willis (CoW) and using
the 1-D arterial network from our previous work in [1] (Figure 1).

2. PROBLEM FORMULATION

2.1. The 1-D model

Conservation of mass and momentum applied to a 1-D impermeable and deformable tubular
control volume of incompressible and Newtonian fluid provides the hyperbolic system of partial
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where x is the axial coordinate along the vessel, t is the time, A(x, t) is the cross-sectional area
of the vessel, U (x, t) is the average axial velocity, P(x, t) is the average internal pressure over
the cross section, � is the density of the blood, and f = −2��(�/(� − 1))U is the friction force
per unit length, in which � is the blood viscosity and � is a non-dimensional correction factor that
depends on the assumed velocity profile. The system of governing equations can be completed
with the tube law

P = �

A0
(
√
A − √

A0), �(x)= 4

3

√
�hE (2)

which assumes a thin, homogeneous, incompressible and elastic arterial wall with a thickness h(x),
a Young’s modulus E(x), and a sectional area A0(x) at the reference state (P,U ) = (0, 0).

Riemann’s method of characteristics applied to Equations (1) and (2) shows that changes in
pressure and velocity are propagated forward by Wf at a speed of U + c and backward by
Wb at a speed of U − c. If � and A0 are constant along x and f = 0, Wf,b =U ± 4(c − c0),
c(A) = √

(�/2�A0)A1/4, and c0 = c(A0).
The 1-D equations are solved in arterial networks using a discontinuous Galerkin scheme with

a Legendre polynomial spectral/hp spatial discretization and a second-order Adams–Bashforth
time-integration scheme. This algorithm, which has been successfully tested against in vitro data
[2], involves the solution of Riemann problems at the interfaces of each artery, at the junctions
and at the inflow and outflow boundaries. Further details on the 1-D model are given in [3].

2.2. 0-D models and their coupling with 1-D models

The coupling between a 1-D domain and a 0-D model is established through the solution of a
Riemann problem at their interface (Figure 2, left). An intermediate state (A∗,U∗) originates at
time t + �t (�t is the time step) from (AL,UL) and (AR,UR) at time t . The state (AL,UL)
corresponds to the end point of the 1-D domain, and (AR,UR) is a virtual state selected so that
(A∗,U∗) satisfies the relation between A∗ and U∗ dictated by the 0-D model used. According to
the method of characteristics,

Wf(A
∗,U∗) =Wf(AL,UL) (3)

Wb(A
∗,U∗) =Wb(AR,UR) (4)

since U�c under physiological conditions. A mathematical analysis of this coupling is given
in [4]. The 1-D boundary condition is imposed by assuming AR = AL to close the problem, which
leads to

UR = 2U∗ −UL (5)
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Figure 2. (Left) Notation for the Riemann problem. (Middle) RCR windkessel model depicted
using the electric analogy. (Right) Effect of R1 on the propagation of a Gaussian wave in a

single 1-D domain coupled to an RCR model.

2.2.1. Terminal resistance (R) model. This model simulates the peripheral circulation as a purely
resistive load R, in which the state (A∗,U∗) satisfies A∗U∗ = (P(A∗) − Pout)/R, where Pout is the
venous pressure assumed to be constant. Combined with Equations (2) and (3) yields a nonlinear
equation in A∗

F(A∗) = R[UL + 4c(AL)]A∗ − 4Rc(A∗)A∗ − �

A0
(
√
A∗ − √

A0) + Pout = 0 (6)

that is solved using Newton’s method with the initial guess A∗ = AL. Once A∗ has been obtained,
U∗ is calculated as U∗ = (P(A∗) − Pout)/A∗R and the boundary condition is prescribed through
Equation (5).

Linearization of Equations (1) and (2) yields W̃b =−RtW̃f−2Pout/A0/(R + Z0), where W̃f,b =
U∗ ± (c0/A0)A∗ are the linear Riemann invariants [3], Rt = (R − Z0)/(R + Z0) is the terminal
reflection coefficient and Z0 = �c0/A0 is the characteristic impedance of the 1-D vessel. Note that
when R tends to infinity, Rt tends to 1 (full reflection), and when R = 0, Rt = −1 (open end). The
terminal resistance model completely absorbs any incoming wave when R = Z0 so that Rt = 0.

2.2.2. Matched three-element (RCR) windkessel model. This model accounts for the resistance,
R, and the compliance, C , of the peripheral vessels using the RCR windkessel model shown in
Figure 2 (middle). According to Section 2.2.1, we consider R1 = Z0 to let any incoming wave
reach the CR2 system without being reflected. Waves are reflected by the CR2 system, which is
governed by

C
dPC
dt

= A∗U∗ − PC − Pout
R2

(7)

where PC is the pressure at C and R2 = R − R1. The coupling is solved as for the R model
(Section 2.2.1), but with Pout = PC and R = R1. At every time step n, PC is determined by solving
a first-order time discretization of Equation (7), Pn

C = Pn−1
C + �t/C(ALUL − (Pn−1

C − Pout)/R2),
with Pn−1

C = 0 for n = 1.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1061–1067
DOI: 10.1002/fld



COUPLING 1-D, 0-D AND CEREBRAL AUTO-REGULATION MODELS 1065

2.3. The cerebral auto-regulation model

The brain is particularly dependent on the cerebral circulation since it has a high metabolic rate
and is very sensitive to ischaemia (insufficient blood supply). Sufficient blood supply to the brain
is maintained by a network of collateral vessels, the CoW being the main collateral pathway,
and a precise system of auto-regulation by vasodilatation and vasoconstriction that can alter each
cerebral resistance R. We assume that the concentration of CO2 in the brain tissue (CtCO2) is the
driving force for changes in R. The CO2 produced by brain metabolism diffuses into the blood
stream and is removed by the cerebral blood flow (CBF) per unit mass of brain tissue perfused.
For a constant cerebral metabolism, if CBF is reduced, CtCO2 increases and the pH in the tissue
decreases [5], producing smooth muscle relaxation [6] and, hence, reducing R. The change in
CtCO2 is simulated as the difference between the rate of production of CO2 in the tissue (equal
to the rate of consumption of O2, CMRO2, which is assumed to be 0.035ml O2/g brain/min) and
the rate of removal of CO2 by the CBF,

dCtCO2

dt
=CMRO2 − CBF(t)(CtCO2 − CaCO2) (8)

where CaCO2 is the concentration of CO2 in arterial blood, which is governed by pulmonary
circulation and is assumed to be constant in this study, CaCO2 = 0.5 ml CO2/g brain. Any further
chemical reactions are implicitly incorporated into the dynamic for R, which is postulated to be a
function of CtCO2,

dAR

dt
=GR(CtCO2SP − CtCO2) (9)

where AR represents an auto-regulation activation for R to change, GR = 20 is a proportional gain
to match the transient dynamics measured in [7], and CtCO2SP is the normal or set point CtCO2,
which is given as the steady-state solution of Equation (8), CtCO2SP =CaCO2 +CMRO2/CBFSP,
where CBFSP is the set point CBF. R is obtained from the sigmoidal function

R = RL + RUeAR−Ĉ

1 + eAR−Ĉ
(10)

where RU and RL are the upper and lower limits of R(t) during auto-regulation, respectively, and
Ĉ = − log[(RSP − RL)/(RU − RSP)] is a constant to ensure that for AR = 0, R = RSP. We consider
RL = 0.74RSP based on the experimental data for the normotensive group in [8]. RU is assumed
to be 1.30RSP.

This auto-regulation model is coupled to a terminal resistance model (Section 2.2.1) at the outlet
of each cerebral artery in Figure 1. In each iteration, Equations (8) and (9) are solved for CtCO2
and AR using a fourth-order Runge–Kutta scheme, with CBF calculated from the flow at the outlet
of the 1-D domain, ALUL, assuming a total brain mass of 1.5 kg distributed among the cerebral
arteries in the same proportion as the flow distribution determined by RSP. Once AR is known,
R(t) is determined using Equation (10), Equation (6) is solved for A∗ and the boundary condition
is prescribed through Equation (5).
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Figure 3. CBF (left), CtCO2 (middle) and R (right) time histories in the right MCA (vessel 24 in Figure 1)
after introducing pressure drops of 20 (only case shown for CBF), 30 and 40mmHg in the right carotid

artery (vessel 6). Variables are non-dimensionalized by their corresponding set point values.

3. RESULTS AND DISCUSSION

Figure 2 (right) shows the effect of coupling an RCR model with R1 �= Z0 to a single 1-D domain in
which a Gaussian wave is propagated. Unless R1 = Z0, significant reflected waves are generated by
the RCR model, since Rt �= 0 in R1 according to Section 2.2.1. If R1 = Z0, waves are only reflected
by the CR2 system, and the RCR model produces more physiological waveforms in an arterial
network as the system shown in Figure 1. This figure shows pressure and velocity waveforms
simulated using the arterial network in [1], with the inflow velocity at the ascending aorta shown
in the figure. RSP in the six cerebral arteries are set to the values that yield the set point flows
reported in [9] for normal subjects. This model is used to study the effects on cerebral flows of
reductions in their afferent blood pressures caused by sudden obstructions in the flow, particularly
during surgical procedures such as carotid endarterectomy (surgical incision to remove plaque in
patients with a severe stenosis), angioplasty (balloon expansion) and stenting (introduction of a
mesh to keep the lumen open after angioplasty).

Figure 3 shows the CBF, CtCO2 and R time histories in the right middle cerebral artery (MCA)
for different pressure drops in the middle of the right carotid artery. The sudden decrease in
CBF caused by the pressure drop yields an increase in CtCO2, according to Equation (8), which
produces a decrease in R through Equations (9) and (10). This mechanism restores CBFSP in all
the cerebral arteries of the complete CoW for pressure drops of up to 30mmHg (Table I). For a
pressure drop of 40mmHg, R reaches its lower limit of 0.74RSP and CBFSP and CtCO2SP cannot
be fully restored (Figure 3). However, the expected increase in the O2 extraction [10] might ensure
sufficient O2 delivery. The flows in the right posterior cerebral artery (PCA) and all left cerebral
arteries are less affected by the right carotid occlusion, since they are perfused by the basilar and
left carotid arteries.

Among the anatomical variations considered (see Figure 1), the absence of the first segment of
the left anterior cerebral artery (ACA), (case V) is the worst scenario in terms of the amount of
CBFSP restored by the auto-regulation model, particularly in the right MCA and ACA and the left
ACA. Furthermore, our results show that the anterior communicating artery (ACoA) is a critical
collateral pathway to compensate for carotid occlusions, particularly in the right MCA and ACA
(Table I). These two findings are in agreement with [1], in which only the compensatory ability
of the CoW itself was assessed, without accounting for vasodilatation and vasoconstriction.
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Table I. Percentage of CBFSP restored after auto-regulation in the right ACA, MCA, and PCA (vessels
30, 24 and 33 in Figure 1) for different pressure drops (20–30–40mmHg) in the right carotid (vessel 6).

Complete CoW Anatomical variation II Anatomical variation V

Anterior cerebral artery (ACA) 100–100–97 100–92–82 100–91–81
Middle cerebral artery (MCA) 100–99–92 100–93–82 100–92–82
Posterior cerebral artery (PCA) 100–100–100 100–100–100 100–100–100

4. CONCLUSIONS

Pulse wave propagation in the cerebral circulation has been simulated using a multiscale approach
involving a 1-D model for the main cerebral arteries and a 0-D model for the control of the terminal
resistances. The complex chemical pathways of cerebral auto-regulation have been simplified by
assuming that CO2 is the driving force for vasodilatation and vasoconstriction. We have used
variables with a direct physiological meaning and parameters that can be obtained from human
experimental data. This model allows us to better understand the factors that increase the risk of
cerebral ischaemia during surgical procedures in the afferent arteries of the CoW, and highlights
the potential of reduced modelling to provide clinically valuable and fast information when applied
to patient-specific data.
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